

Roche

Roche Diagnostics Data Mesh and Data Vault Journey

Two systems working in harmony

Paul Rankin Roche Diagnostics

September 2022

Table of contents

- 1. What is Data Mesh
- 2. Data Vault and Data Mesh -Synergies and Conflicts
- 3. Data Vault Modeling for Data Mesh
- 4. Lessons Learned

Roche

Swiss multinational healthcare company that operates under two divisions: Pharma and Diagnostics

The world's largest biotech company

125-year history

Revenue: 62.8 billion CHF Number of employees: 100,920

How the journey started

18 months ago my boss proposed a new approach within Roche to delivering analytics

Could Data Mesh really help Roche?

We needed to find out more about Data Mesh and what changes were required

Hi Zhamak, can you please help us how to implement Data Mesh?

What is Data Mesh?

What is data mesh?

Data mesh is a sociotechnical paradigm

- Data mesh is a decentralized sociotechnical approach to share, access, and manage analytical data in complex and large-scale environments—within or across organizations.
- Data mesh, at core, is founded in *decentralization* and *distribution of responsibility* to people who are closest to the data in order to support continuous change and scalability.
- Data mesh expects independent teams to own and serve their analytical data. It expects this data to be served as a product, accompanied by behavior that enriches the experience of the data consumer, to discover, trust, and use it for multiple purposes.

Director of Emerging Technologies ThoughtWorks, North America

Principles of Data Mesh

Four simple principles capture what underpins data mesh's logical architecture and operating model

Decentralize the ownership of analytical data to business domains closest to the data

Domain-oriented data is shared as a product directly with data users

Empower domains to build their own pipelines from source to consumption

A data governance operating model based on a federated decisionmaking structure

These principles are designed to progress us toward the objectives of data mesh: increase value from data at scale, sustain agility as an organization grows, and embrace change in a complex and volatile business context

Domain-oriented ownership

Founded in decentralization and distribution of data responsibility to people closest to the data

Data as a product

Applying Product Thinking to Data

10

Self-serve data platform

11

Extracting and harvesting domain agnostic infrastructure into a separate data platform

Self-serve Data Platform addresses:

- Duplication of efforts in each domain
- Increased cost of operation
- Likely large-scale inconsistencies
- Incompatibilities across domains

Federated computational governance

The definition of data governance can often be understood to mean many things

Data Product Teams Responsibility:

Ensure the availability of safe, high quality, consistent, compliant, privacyrespecting, and usable data across an organization with managed risk

Federated computational governance

Data mesh proposes a governance operating model that benefits from federated decision making

Multidimensional technical and organizational shifts

14

Let's summarize the shifts that data mesh introduces compared to past approaches

Data byproduct of code

Was Roche ready for Data Mesh?

Yes, we believed that Roche was at a level of maturity to benefit from Data Mesh

Images source: Data Mesh, O'Reilly

Data Vault and Data Mesh -Synergies and Conflicts

Let's look at what the authors say

On face value both approaches seem to be trying to solve similar problems

Data Mesh is a new approach in sourcing, managing, and accessing data for analytical use cases at scale

Zhamak Dehghani

Data Vault allows the ability to adapt quickly, model the business accurately, and scale with the business needs

Michael Olschimke & Dan Linstedt

Let's look at what the authors say

A closer look highlights some obvious conflicts

I often get asked if the existing warehouses, lakes, and lakehouses that the organizations have created can coexist with the mesh. The short answer is transitionally yes, but ultimately no.

Zhamak Dehghani

Data Vault represents a system of Business Intelligence. A number of aspects that relate to the business of designing, implementing and managing a data warehouse.

Compare and contrast

Let's try to break it down and compare each component

Data Vault 2.0

- Data Vault Architecture
- Data Vault Methodology
- Data Vault Modeling
- Data Vault Implementation

"Each of these components plays a key role in the overall success of an enterprise data warehousing project"

Data Mesh

- Domain Ownership
- Data as a Product
- Self-Serve Data Platform
- Federated Computational Governance

"Interplay of the principles are collectively necessary and sufficient to addresses new challenges that may arise"

Architecture

Both books have dedicated sections on architecture

The ultimate goal of the architecture is to remove and reduce the overall level of *centralization*. Hence, ultimately a mesh implementation and a *central* data warehouse or lake should not coexist.

Zhamak Dehghani

The Data Vault 2.0 architecture addresses the extensibility and dimensions of scalability including workload, complexity, availability and security.

Architecture

Data Vault 2.0 presents an alternate three layer architecture

Architecture

Data Mesh presents a distributed architecture and multi-plane self-serve data platform

Methodology

There is no mention of methodology in Data Mesh

Data Mesh does not talk about methodology but a change in organization and culture adopting the movement-based change approach.

Zhamak Dehghani

The Data Vault 2.0 Methodology provides best practice for project execution including project planning, project execution, review and improvement.

Modeling

There is no real mention of data modeling in Data Mesh

The transformation code is domain-specific and encapsulates tasks such as a domain's business logic as well as aggregating and modeling data.

Zhamak Dehghani

The Data Vault model was indeed invented by Dan Linstedt and considered by most industry experts to be the only truly scalable data modeling technique available today.

Implementation

Data Vault 2.0 presents best practice implementation

Data Mesh presents a high level Execution framework but does not go into any great detail about an implementation strategy.

Zhamak Dehghani

The Data Vault 2.0 Implementation deep dives into how to make use of pattern based automation to ensure code standards are met, data quality is maintained and pipelines are stable.

Conclusion

After many months of internal and external discussion

- Both trying to solve similar problems
- You cannot really compare a change in Organizational and culture to a data modeling technique and implementation methodology
- What you can compare are the different logical architectures
- Redefine the ownership and boundaries of an enterprise data warehouse
- Business keys are the only way to ensure interoperability
- Pattern based automation is key to scaling

Data Vault Modeling for Data Mesh

Pre Data Mesh

Analytics was delivered in a traditional IT as producers and Business as consumers way

Pre Data Mesh

We were already following the Data Vault modeling approach with some degree of success

► PSA_SALESFORCE Tables	RAW_DV Tables HUB_PRODUCT HUB_CUSTOMER HUB_COMPANY HUB_ACCOUNT HUB_CASE HUB_TERRITORY	BUSINESS_DV Tables SLAT_CUSTOMER BSAT_TERRITORY_HIERARCHY PIT_TERRITORY_SALES LNK_CASE_ACCOUNT BRG_SALES BRG_CASE_DETAILS	► Tables ■ DIM_CUSTOMER ■ DIM_TERRITORY ■ DIM_PRODUCT ■ FACT_SALES
• PSA SAP	SAT_CUSTOMER_SAP	SAT_CUSTOMER_SEDC	
 Tables 	SAT_CASE SAT_CASE SAT_TERRITORY LSAT_TERRITORY_SALE LNK_TERRITORY_SALES XLNK_SALES LNK_CASE_ACCOUNT SAT_PRODUCT_SFDC	5 S	☐ DIM_TERRITORY ☐ DIM_PRODUCT ☐ FACT_CASE_DETAILS

30

Pre Data Mesh

Pros and Cons of analytics delivery pre data mesh

Pros

- Pattern based automation and configuration
- Highly skilled central data modeling team completely aligned with each other

Cons

LNK CA

- Releases slow
- Backlog huge
- Business demanding quicker development times

Data Mesh - organizational changes

Domain owned, cross-functional data product teams were introduced

Data Mesh - ownership changes

Data product teams take ownership of their own pipelines and code

Koch

Data Mesh - ownership changes

Data product teams take ownership of their own pipelines and code

What about data modeling

How should data modeling be addressed when implementing Data Mesh

Pros

- Scaling faster as data product teams bring new developers
- More frequent releases
- Data modeling is closer to those who understand the data
- Reduced IT and business friction
- Easier access to source systems as there is clear business use case

Cons

- Multiple data product teams loading to same HUBs and LNKs breaches data product team boundaries
- Data modeling skills are often difficult to find for every data product team
- Lack of 'how to' implement

Data Mesh - reusable data products

Components of the data vault model considered reusable data products

Data Mesh - reusable data products

Components of the data vault model considered reusable data products

36

Data Mesh - reusable data products

Components of the data vault model considered reusable data products

Lessons Learned

Success

Decentralization brings with it many challenges

Successes

- Improved data quality
- Increased accountability
- Improved agility and speed of delivery
- Reduced data silos
- Platform team can focus on delivering capabilities, standards and accelerators

Challenges

- Lacks 'how to'
- Little desire to own Data Products
- Governance of shared data is still sketchy
- Getting good data engineers and data modelers in the data product teams

Roche Data Mesh Platform

Roche Data Mesh Platform

The Data Product Lifecycle

RDDM Self-Service Data Platform

Platform a glance Roche mesh experience at glance

FEB 2021 Platform build started		6-8 weeks Average MVP time		# 40 Data product teams working
690	#2680 Users, developers onboarded	180 TB Storage consumed so far	#50 data products Published following FAIR principles	
120 releases last month, vs 1 release in 3 months		15+ Tools & technologies integrated in the ecosystem to enabled various capabilities		40+ million Savings in inventory reduction, cost avoidance and resource optimization

Key Learnings

We needed to find out more about Data Mesh and what changes were required

- Company must be willing to adopt organizational change
- Helps if the company already has a decentralized approach to BI and Analytics
- Company must be at a certain level of data driven maturity
- Must be use-case driven
- Encourage a product mindset
- Good data engineers are key to success
- Agility is key do not be frightened to change direction, refactor or even u-turn
- There is no book that will tell you exactly how to implement or migrate
- Use the tools and vendors to help you get ahead.
- Using natural business keys in your modeling increases the success for interoperability
- Enjoy the journey